Search results for "Dirichlet laplacian"

showing 2 items of 2 documents

Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift

2015

Abstract This paper deals with the eigenvalue problem for the operator L = − Δ − x ⋅ ∇ with Dirichlet boundary conditions. We are interested in proving the existence of a set minimizing any eigenvalue λ k of L under a suitable measure constraint suggested by the structure of the operator. More precisely we prove that for any c > 0 and k ∈ N the following minimization problem min ⁡ { λ k ( Ω ) : Ω quasi-open set , ∫ Ω e | x | 2 / 2 d x ≤ c } has a solution.

Pure mathematicsMinimization of eigenvalueStructure (category theory)01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Weighted Sobolev spaces0101 mathematicsComputingMilieux_MISCELLANEOUSEigenvalues and eigenvectorsMathematicsApplied MathematicsOperator (physics)010102 general mathematicsMinimization problemMathematics::Spectral Theory010101 applied mathematicsDirichlet laplacianDirichlet boundary conditionDirichlet–Laplacian with a driftsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem

2011

Abstract We determine the shape which minimizes, among domains with given measure, the first eigenvalue of a nonlocal operator consisting of a perturbation of the standard Dirichlet Laplacian by an integral of the unknown function. We show that this problem displays a saturation behaviour in that the corresponding value of the minimal eigenvalue increases with the weight affecting the average up to a (finite) critical value of this weight, and then remains constant. This critical point corresponds to a transition between optimal shapes, from one ball as in the Faber–Krahn inequality to two equal balls.

SecondaryMathematics(all)General MathematicsEigenvalue010102 general mathematicsMathematical analysisPerturbation (astronomy)SaturationMathematics::Spectral TheoryCritical value01 natural sciencesCritical point (mathematics)010101 applied mathematicsDirichlet eigenvalueShape optimizationSettore MAT/05 - Analisi MatematicaDirichlet laplacianBall (bearing)Rayleigh–Faber–Krahn inequality0101 mathematicsNonlocalPrimaryEigenvalues and eigenvectorsMathematicsAdvances in Mathematics
researchProduct